Recycling system of hispidin in luminous mushroom
Yuichi Oba  1@  , Yoshiki Suzuki  2@  , Gabriel Martins  3, 4@  , Rodrigo Carvalho  3@  , Tatiana Pereira  3@  , Hans Waldenmaier  3@  , Shusei Kanie  5@  , Naito Masashi  6@  , Anderson Oliveira  7@  , Felipe Dörr  8@  , Ernani Pinto  8@  , Ilia Yampolsky  9, 10@  , Cassius Stevani  3@  
1 : Luminous Organisms Lab., Chubu University, Japan
2 : Nagoya University, Japan
3 : Instituto de Quimica, Universidade de São Paulo, Brazil
4 : Agilent Technologies, Brazil
5 : Nagoya University
6 : Luminosu Orgnisms Lab., Chubu University, Japan
7 : Instituto Oceanográfico, Universidade de São Paulo, Brazil
8 : Faculty of Pharma. Sci., Universidade de São Paulo, Brazil
9 : Institute of Bioorganic Chem., Russian Acad. Sci., Russia
10 : Pirogov Russian Nat. Res. Med. Univ., Moscow

Previously we showed that luminous fungi share a common mechanism in bioluminescence [1], and identified hispidin as a luciferin precursor in Vietnamese Neonothopanus nambi mycelium [2]. In luminous mycelium, hispidin is converted to 3-hydroxyhispidin and then oxidized to caffeylpyruvic acid. Light emission occurs during this oxidization process and the produced caffeylpyruvic acid is readily hydrolyzed to caffeic acid [3].

In this study, we showed the presence of hispidin as a bioluminescent active compound at 25-1,000 pmol/g in the fruiting body of the Japanese Mycena chlorophos, Omphalotus japonicus, and the Brazilian Neonothopanus gardneri. We also found that cell-free fruiting body extract of luminous mushroom M. chlorophos gradually emits the light by the addition of hispidin biosynthetic components, namely caffeic acid, ATP and malonyl-CoA [3]. These findings suggest that continuous weak glow of luminous mushroom is regulated by slow recycling biosynthesis of hispidin.

[1] Purtov et al. (2015) Angew. Chem. Int. Ed. 54, 8124-8128.

[2] Kaskova et al. (2017) Sci. Adv. 3, e1602847.

[3] Oba et al. (2017) Photochem. Photobiol. Sci. 16, 1435-1440.


Online user: 2