Recycling system of hispidin in luminous mushroom

Yuichi Oba*¹, Yoshiki Suzuki², Gabriel Martins^{3,4}, Rodrigo Carvalho³, Tatiana Pereira³, Hans Waldenmaier³, Shusei Kanie⁵, Naito Masashi⁶, Anderson Oliveira⁷, Felipe Dörr⁸, Ernani Pinto⁸, Ilia Yampolsky^{9,10}, and Cassius Stevani³

¹Luminous Organisms Lab., Chubu University, Japan – Japan
²Nagoya University, Japan – Japan
³Instituto de Quimica, Universidade de São Paulo, Brazil – Brazil
⁴Agilent Technologies, Brazil – Brazil
⁵Nagoya University – Japan
⁶Luminosu Orgnisms Lab., Chubu University, Japan – Japan
⁷Instituto Oceanográfico, Universidade de São Paulo, Brazil – Brazil
⁸Faculty of Pharma. Sci., Universidade de São Paulo, Brazil – Brazil
⁹Institute of Bioorganic Chem., Russian Acad. Sci., Russia – Russia
¹⁰Pirogov Russian Nat. Res. Med. Univ., Moscow – Russia

Abstract

Previously we showed that luminous fungi share a common mechanism in bioluminescence [1], and identified hispidin as a luciferin precursor in Vietnamese *Neonothopanus nambi* mycelium [2]. In luminous mycelium, hispidin is converted to 3-hydroxyhispidin and then oxidized to caffeylpyruvic acid. Light emission occurs during this oxidization process and the produced caffeylpyruvic acid is readily hydrolyzed to caffeic acid [3].

In this study, we showed the presence of hispidin as a bioluminescent active compound at 25-1,000 pmol/g in the fruiting body of the Japanese $Mycena\ chlorophos$, $Omphalotus\ japonicus$, and the Brazilian $Neonothopanus\ gardneri$. We also found that cell-free fruiting body extract of luminous mushroom M. chlorophos gradually emits the light by the addition of hispidin biosynthetic components, namely caffeic acid, ATP and malonyl-CoA [3]. These findings suggest that continuous weak glow of luminous mushroom is regulated by slow recycling biosynthesis of hispidin.

Purtov et al. (2015) Angew. Chem. Int. Ed. 54, 8124-8128.

Kaskova et al. (2017) Sci. Adv. 3, e1602847. Oba et al. (2017) Photochem. Photobiol. Sci. 16, 1435-1440.

Keywords: mushroom, fungi, bioluminescence, luciferin, biosynthesis

^{*}Speaker