Chemo-enzymatic cascade reactions of flavin-dependent monooxygenase and firefly luciferase for detection of halogenated and nitro phenols

Pratchaya Watthaisong, Aisaraphon Phintha, Vinutsada Pongsupasa, Panu Pimviriyakul, Yoshihiro Ohmiya, and Pimchai Chaiyen

Abstract

Chemo-enzymatic cascade reactions of flavin-dependent monooxygenase and firefly luciferase for detection of halogenated and nitro phenols

Pratchaya Watthaisong, Aisaraphon Phintha, Vinutsada Pongsupasa, Panu Pimviriyakul, Yoshihiro Ohmiya, and Pimchai Chaiyen

1Vidyasirimedhi Institute of Science and Technology (VISTEC) – 555 Moo 1 Payunp, Wangchan District, Rayong 21210, Thailand
2Mahidol University (MU) – Bangkok, Thailand
3National Institute of Advanced Industrial Science and Technology (AIST) – 1-1-1 Higashi, Tsukuba, Ibaraki 305-8561, Japan

E-mail: pimchai.chaiyen@vistec.ac.th

Halogenated and nitro phenols are used widely as agro- and industrial chemicals. Their accumulations in environment are seriously concerned because they are highly toxic. Their usage and environmental contamination are regulated by United State Environmental Protection Agency (US-EPA). Our group has studied enzymatic reactions of flavin-dependent monooxygenase (HadA) which is able of catalyzing dehalogenation and denitration of 4-halogenated and 4-nitro phenols to generate p-benzoquinone. As p-benzoquinone from the HadA reactions can react with D-cysteine to generate D-luciferin which is a substrate for firefly luciferase, we have developed a novel chemo-enzymatic method for detection of p-halogenated and p-nitro-phenols. Ratios of p-benzoquinone and D-cysteine were varied and monitored absorption (330 nm) and fluorescence (Em 530 nm) spectrum changes to obtain the best condition for D-luciferin synthesis. We obtained the best ratio of D-luciferin synthesis as 1:4 of p-benzoquinone:D-cysteine. We coupled chemo-enzymatic detection to detect
the conversion of p-nitrophenol to D-luciferin using LC-ESI-qTOF techniques. The results showed that not only D-luciferin could be formed but α6-benzothiazole-2-carbaldehyde was also detected. However, this novel chemo-enzymatic reactions can be coupled with the reaction of firefly luciferase to generate light, indicating that this method can be used to detect halogenated and nitro-phenols.

Keywords: Chemo, enzymatic cascade, Flavin, dependent monooxygenase, Firefly luciferase, D, luciferin, Halogenated phenols, Nitro phenols