A genetically encodable fungal bioluminescence system

Ilia Yampolsky∗†2,1

2Pirogov Russian National Research Medical University – Ostrovtianov 1, Moscow 117997 Russia, Russia
1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences – Miklukho-Maklaya, 16/10, Moscow, 117997, Russia

Abstract

In this talk, discussed will be the identification and cloning of fungal luciferase and two enzymes of the biosynthesis pathway of fungal luciferin. Fungal luciferase was found to represent a new protein family with no known homologues. We verified the function of fungal luciferin biosynthesis pathway by introducing the identified genes into the genome of Pichia pastoris, creating a strain that is autoluminescent in standard medium with light intensity visible to the naked eye. Also, we tested the potential of fungal luciferase as a reporter gene in heterologous systems by its expression in E. coli, P. pastoris, Xenopus laevis embryos, and human cells. In all tested conditions, fungal luciferase proved functional, positioning itself as a promising new reporter gene. The availability of a complete eukaryotic luciferin biosynthesis pathway together with a new family of luciferases represent a new molecular playground holding numerous opportunities for basic and applied research. This work was supported by the Russian Science Foundation grant 17-14- 01169.

Keywords: fungal luciferin, fungal luciferase, luciferin biosynthesis pathway, luciferin recycling

∗Speaker
†Corresponding author: ibcnmr@gmail.com